伽玛暴(Gamma-Ray Burst)笔记。记录有关伽玛暴的新文章,另外也包括看的老文章、自己的想法、以及跟天文相关的一些东西。 Feel free to leave me a message by comments or by email.

星期二, 一月 31, 2012

Tanvir, N. R. 2012 用高红移伽马暴探测早期宇宙的恒星形成率

主要内容:
通过仔细看高红移暴的宿主星系,给出星系的极限光度,从而推测出早期宇宙的恒星形成率的上限。

精彩摘抄:


文章信息:

· Find Similar Abstracts (with default settings below)
· arXiv e-print (arXiv:1201.6074)
· References in the Article
·
· Translate This Page
Title:
Star formation in the early universe: beyond the tip of the iceberg
Authors:
Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Fynbo, J. P. U.; Hjorth, J.; Wiersema, K.; Bremer, M. N.; Rhoads, J.; Jakobsson, P.;O'Brien, P. T.; Stanway, E. R.; Bersier, D.; Natarajan, P.; Greiner, J.; Watson, D.; Castro-Tirado, A. J.; Wijers, R. A. M. J.;Starling, R. L. C.; Misra, K.; Graham, J. F.
Publication:
eprint arXiv:1201.6074
Publication Date:
01/2012
Origin:
ARXIV
Keywords:
Astrophysics - Cosmology and Extragalactic Astrophysics
Comment:
Submitted to ApJ. 13 pages, 6 figures
Bibliographic Code:
2012arXiv1201.6074T

Abstract

We present late-time Hubble Space Telescope imaging of the fields of six Swift GRBs lying at 5.0<z<9.5. Our data includes very deep observations of the field of the most distant spectroscopically confirmed burst, GRB 090423, at z=8.2. Using the precise positions afforded by their afterglows we can place stringent limits on the luminosities of their host galaxies. In one case, that of GRB 060522 at z=5.11, there is a marginal excess of flux close to the GRB position which may be a detection of a host at a magnitude J(AB)=28.5. None of the others are significantly detected meaning that all the hosts lie below L\star at their respective redshifts, with star formation rates SFR<4Mo/yr in all cases. Indeed, stacking the five fields with WFC3-IR data we conclude a mean SFR<0.17Mo/yr per galaxy. These results support the proposition that the bulk of star formation, and hence integrated UV luminosity, at high redshifts arises in galaxies below the detection limits of deep-field observations. Making the reasonable assumption that GRB rate is proportional to UV luminosity at early times allows us to compare our limits with expectations based on galaxy luminosity functions derived from the Hubble Ultra-Deep Field (HUDF) and other deep fields. We infer that a luminosity function which is evolving rapidly towards steeper faint-end slope (alpha) and decreasing characteristic luminosity (L\star), as suggested by some other studies, is consistent with our observations, whereas a non-evolving LF shape is ruled out at >90% confidence. Although it is not yet possible to make stronger statements, in the future, with larger samples and a fuller understanding of the conditions required for GRB production, studies like this hold great potential for probing the nature of star formation, the shape of the galaxy luminosity function, and the supply of ionizing photons in the early universe.
Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

没有评论: