伽玛暴(Gamma-Ray Burst)笔记。记录有关伽玛暴的新文章,另外也包括看的老文章、自己的想法、以及跟天文相关的一些东西。 Feel free to leave me a message by comments or by email.

星期二, 三月 11, 2014

Rovelli 2014 普朗克星

主要内容:
作者认为大质量恒星坍缩成黑洞的时候可以并不真的成为黑洞,而是由于所谓的“量子引力压”抵抗住了引力(注意在视界面以内),从而称为普朗克星。这个量子引力压可以产生反弹,然后以霍金辐射的形式,看起来像黑洞蒸发。所观测到的可能就是一个伽马暴,当然不是大多数和超新星成协的伽马暴。因为从坍缩到反弹虽然在当地系可以是很短的时间,但是由于巨大的引力红移,在观测者看是一个超级长的时间,可能就和霍金算的黑洞蒸发的时间一样吧,不过如果一样的话现在就看不到,太长了。

作者所要解决的问题是恒星在坍缩成黑洞,然后再蒸发的过程中信息丢失了。但如果没有奇点,信息就不丢失。

精彩摘抄:


文章信息:

· Find Similar Abstracts (with default settings below)
· arXiv e-print (arXiv:1401.6562)
· References in the Article
· Citations to the Article (2) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Planck stars
Authors:
Rovelli, CarloVidotto, Francesca
Publication:
eprint arXiv:1401.6562
Publication Date:
01/2014
Origin:
ARXIV
Keywords:
General Relativity and Quantum Cosmology, Astrophysics - High Energy Astrophysical Phenomena, High Energy Physics - Theory
Comment:
6 pages, 3 figures. Nice paper
Bibliographic Code:
2014arXiv1401.6562R

Abstract

A star that collapses gravitationally can reach a further stage of its life, where quantum-gravitational pressure counteracts weight. The duration of this stage is very short in the star proper time, yielding a bounce, but extremely long seen from the outside, because of the huge gravitational time dilation. Since the onset of quantum-gravitational effects is governed by energy density ---not by size--- the star can be much larger than planckian in this phase. The object emerging at the end of the Hawking evaporation of a black hole can then be larger than planckian by a factor $(m/m_{\scriptscriptstyle P})^n$, where $m$ is the mass fallen into the hole, $m_{\scriptscriptstyle P}$ is the Planck mass, and $n$ is positive. We consider arguments for $n=1/3$ and for $n=1$. There is no causality violation or faster-than-light propagation. The existence of these objects alleviates the black-hole information paradox. More interestingly, these objects could have astrophysical and cosmological interest: they produce a detectable signal, of quantum gravitational origin, around the $10^{-14} cm$ wavelength.

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

没有评论: