Lazzati 2008 中微子冷却盘的晚期吸积作为XRFs的中心能源
主要内容:
精彩摘抄:
文章信息:
- · arXiv e-print (arXiv:0805.0138)
- · References in the Article
- ·
- · Translate This Page
Title: | X-ray flares, neutrino cooled disks, and the dynamics of late accretion in GRB engines | |
Authors: | Lazzati, Davide; Perna, Rosalba; Begelman, Mitchell C. | |
Publication: | eprint arXiv:0805.0138 | |
Publication Date: | 05/2008 | |
Origin: | ARXIV | |
Keywords: | Astrophysics | |
Comment: | 5 pages, MNRAS in press | |
Bibliographic Code: | 2008arXiv0805.0138L |
Abstract
We compute the average luminosity of X-ray flares as a function of time, for a sample of 10 long-duration gamma-ray burst afterglows. The mean luminosity, averaged over a timescale longer than the duration of the individual flares, declines as a power-law in time with index ~-1.5. We elaborate on the properties of the central engine that can produce such a decline. Assuming that the engine is an accreting compact object, and for a standard conversion factor between accretion rate and jet luminosity, the switch between a neutrino-cooled thin disk and a non-cooled thick disk takes place at the transition from the prompt to the flaring phase. We discuss the implications of this coincidence under different scenarios for the powering of the GRB outflow. We also show that the interaction of the outflow with the envelope of the progenitor star cannot produce flares out of a continuous relativistic flow, and conclude that it is the dynamics of the disk or the jet-launching mechanism that generates an intrinsically unsteady outflow on timescales much longer than the dynamical timescale of the system. This is consistent with the fact that X-ray flares are observed in short-duration GRBs as well as in long-duration ones.Bibtex entry for this abstract Preferred format for this abstract (see Preferences)
没有评论:
发表评论