Wang 2009 GRB 080916C的辐射机制
主要内容:
单一同步辐射解释的最好.
精彩摘抄:
文章信息:
· Find Similar Abstracts (with default settings below) - · arXiv e-print (arXiv:0903.2086)
- · References in the Article
- ·
- · Translate This Page
Title: | GRB 080916C: on the radiation origin of the prompt emission from KeV/MeV to GeV | |
Authors: | Wang, Xiang-Yu; Li, Zhuo; Dai, Zi-Gao; Meszaros, Peter | |
Publication: | eprint arXiv:0903.2086 | |
Publication Date: | 03/2009 | |
Origin: | ARXIV | |
Keywords: | Astrophysics - High Energy Astrophysical Phenomena | |
Comment: | 5 pages (emulateapj), no figures, submitted to ApJ Letters | |
Bibliographic Code: | 2009arXiv0903.2086W |
Abstract
Fermi observations of high-energy gamma-ray emission from GRB 080916C shows that its spectrum is consistent with the Band function from MeV to tens of GeV. Assuming one single emission mechanism dominates in the whole energy range, we show that this spectrum is consistent with synchrotron origin by shock-accelerated electrons. The simple electron inverse-Compton model and the hadronic model are found to be less viable. In the synchrotron scenario, the synchrotron self-Compton scattering is likely to be in the Klein-Nishina regime and therefore the resulting high-energy emission is subdominant, even though the magnetic field energy density is lower than that in relativistic electrons. The Klein-Nishina inverse-Compton cooling may also affect the low-energy electron number distribution and hence results in a low-energy synchrotron photon spectrum $n \nu^{-1}$ below the peak energy. Under the framework of the electron synchrotron interpretation, we constrain the shock microphysical parameters and derive a lower limit of the upstream magnetic fields. The detection of synchrotron emission extending to about 70 GeV in the source frame in GRB 080916C favors the Bohm diffusive shock acceleration if the bulk Lorentz factor of the relativistic outflow is not significantly greater than thousands.Bibtex entry for this abstract Preferred format for this abstract (see Preferences)
没有评论:
发表评论