Bucciantini 2009长暴的spin down磁星模型
主要内容:
精彩摘抄:
文章信息:
· Find Similar Abstracts (with default settings below)
· arXiv e-print (arXiv:0901.3801)
· References in the Article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Magnetized Relativistic Jets and Long-Duration GRBs from Magnetar Spindown during Core-Collapse Supernovae
Authors:
Bucciantini, N.; Quataert, E.; Metzger, B. D.; Thompson, T. A.; Arons, J.; Del Zanna, L.
Publication:
eprint arXiv:0901.3801
Publication Date:
01/2009
Origin:
ARXIV
Keywords:
Astrophysics - High Energy Astrophysical Phenomena
Comment:
15 pages, 7 figures, submitted to MNRAS
Bibliographic Code:
2009arXiv0901.3801B
AbstractWe use ideal axisymmetric relativistic magnetohydrodynamic simulations to calculate the spindown of a newly formed millisecond, B ~ 10^{15} G, magnetar and its interaction with the surrounding stellar envelope during a core-collapse supernova (SN) explosion. The mass, angular momentum, and rotational energy lost by the neutron star are determined self-consistently given the thermal properties of the cooling neutron star's atmosphere and the wind's interaction with the surrounding star. The magnetar drives a relativistic magnetized wind into a cavity created by the outgoing SN shock. For high spindown powers (~ 10^{51}-10^{52} ergs/s), the magnetar wind is super-fast at almost all latitudes, while for lower spindown powers (~ 10^{50} erg/s), the wind is sub-fast but still super-Alfvenic. In all cases, the rates at which the neutron star loses mass, angular momentum, and energy are very similar to the corresponding free wind values (<~ 30% differences), in spite of the causal contact between the neutron star and the stellar envelope. In addition, in all cases that we consider, the magnetar drives a collimated (~5-10 deg.) relativistic jet out along the rotation axis of the star. Nearly all of the spindown power of the neutron star escapes via this polar jet, rather than being transferred to the more spherical SN explosion. The properties of this relativistic jet and its expected late-time evolution in the magnetar model are broadly consistent with observations of long duration gamma-ray bursts (GRBs) and their associated broad-lined Type Ic SN.
Bibtex entry for this abstract Preferred format for this abstract (see Preferences)
没有评论:
发表评论