伽玛暴(Gamma-Ray Burst)笔记。记录有关伽玛暴的新文章,另外也包括看的老文章、自己的想法、以及跟天文相关的一些东西。 Feel free to leave me a message by comments or by email.

星期一, 八月 23, 2010

Martayan 2010 看大质量的Oe/Be星能否作为伽马暴的前身星

主要内容:
可能

精彩摘抄:


文章信息:

· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· Full Refereed Journal Article (PDF/Postscript)
· arXiv e-print (arXiv:1004.3362)
· References in the article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Can massive Be/Oe stars be progenitors of long gamma ray bursts?
Authors:
Martayan, C.; Zorec, J.; Frémat, Y.; Ekström, S.
Affiliation:
AA(European Organization for Astronomical Research in the Southern Hemisphere, Alonso de Cordova 3107, Vitacura, Santiago de Chile, Chile Christophe.Martayan@eso.org; GEPI, Observatoire de Paris, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92195 Meudon Cedex, France), AB(Institut d'Astrophysique de Paris, UMR7095, CNRS, Université Marie & Pierre Curie, 98bis Boulevard Arago 75014 Paris, France), AC(Royal Observatory of Belgium, 3 avenue circulaire, 1180 Brussels, Belgium), AD(Geneva Observatory, University of Geneva, Maillettes 51, 1290 Sauverny, Switzerland)
Publication:
Astronomy and Astrophysics, Volume 516, id.A103 (A&A Homepage)
Publication Date:
06/2010
Origin:
EDP Sciences
Keywords:
gamma-ray bursts: general, stars: early-type, stars: emission-line, Be, stars: fundamental parameters, Magellanic Clouds
DOI:
10.1051/0004-6361/200913079
Bibliographic Code:
2010A&A...516A.103M

Abstract

Context. The identification of long-gamma-ray-bursts (LGRBs) is still uncertain, although the collapsar engine of fast-rotating massive stars is gaining a strong consensus.
Aims: We propose that low-metallicity Be and Oe stars, which are massive fast rotators, as potential LGRBs progenitors.
Methods: We checked this hypothesis by 1) testing the global specific angular momentum of Oe/Be stars in the ZAMS with the SMC metallicity; 2) comparing the ZAMS (Ω/Ωc,M/Mȯ) parameters of these stars with the area predicted theoretically for progenitors with metallicity Z = 0.002; and 3) calculating the expected rate of LGRBs/year/galaxy and comparing them with the observed ones. To this end, we determined the ZAMS linear and angular rotational velocities for SMC Be and Oe stars using the observed V sin i parameters, corrected from the underestimation induced by the gravitational darkening effect.
Results: The angular velocities of SMC Oe/Be stars are on average <Ω/Ωc> = 0.95 in the ZAMS. These velocities are in the area theoretically predicted for the LGRBs progenitors. We estimated the yearly rate per galaxy of LGRBs and the number of LGRBs produced in the local Universe up to z = 0.2. We have considered that the mass range of LGRB progenitors corresponds to stars hotter than spectral types B0-B1 and used individual beaming angles from 5 to 15°. We thus obtain R^pred_LGRB ~ 10-7 to ~10-6 LGRBs/year/galaxy, which represents on average 2 to 14 LGRB predicted events in the local Universe during the past 11 years. The predicted rates could widely surpass the observed ones [(0.2–3)×10-7 LGRBs/year/galaxy; 8 LGRBs observed in the local Universe during the last 11 years] if the stellar counts were made from the spectral type B1-B2, in accordance with the expected apparent spectral types of the appropriate massive fast rotators.
Conclusions: We conclude that the massive Be/Oe stars with SMC metallicity could be LGRBs progenitors. Nevertheless, other SMC O/B stars without emission lines, which have high enough specific angular momentum, can enhance the predicted RLGRB rate.
Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

没有评论: