伽玛暴(Gamma-Ray Burst)笔记。记录有关伽玛暴的新文章,另外也包括看的老文章、自己的想法、以及跟天文相关的一些东西。 Feel free to leave me a message by comments or by email.

星期四, 五月 31, 2007

Gaensler 2007 SN 1987A的15年观测-射电图像

主要内容:
给出了射电的图像随时间的膨胀的观测。

精彩摘抄:


文章信息:
arXiv:0705.0057 [ps, pdf, other]

Fifteen Years of High-Resolution Radio Imaging of Supernova 1987A

Authors: B. M. Gaensler (1), L. Staveley-Smith (2), R. N. Manchester (3), M. J. Kesteven (3), L. Ball (3), A. K. Tzioumis (3) ((1) U. Sydney, (2) U. Western Australia, (3) ATNF)
Abstract: Supernova 1987A in the Large Magellanic Cloud provides a spectacularly detailed view of the aftermath of a core-collapse explosion. The supernova ejecta initially coasted outward at more than 10% of the speed of light, but in 1990 were observed to decelerate rapidly as they began to encounter dense circumstellar material expelled by the progenitor star. The resulting shock has subsequently produced steadily brightening radio synchrotron emission, which is resolved by the Australia Telescope Compact Array (ATCA) into an expanding limb-brightened shell. Here we present 15 years of ATCA imaging of Supernova 1987A, at an effective angular resolution of 0.4 arcsec. We find that the radio remnant has accelerated in its expansion over this period, from approx 3600 km/s in 1992 to approx 5200 km/s at the end of 2006. The published diameters of the evolving X-ray shell have been ~15% smaller than the corresponding radio values, but a simultaneous Fourier analysis of both radio and X-ray data eliminates this discrepancy, and yields a current diameter for the shell in both wave-bands of approx 1.7 arcsec. An asymmetric brightness distribution is seen in radio images at all ATCA epochs: the eastern and western rims have higher fluxes than the northern and southern regions, indicating that most of the radio emission comes from the equatorial plane of the system, where the progenitor star's circumstellar wind is thought to be densest. The eastern lobe is brighter than and further from the supernova site than the western lobe, suggesting an additional asymmetry in the initial distribution of supernova ejecta.

没有评论: